Static Computer Memory Integrity Testing (SCMIT)

An experiment flown on STS-40 and STS-87 as part of GAS Payloads G-616 and G-036

Background

The Static Computer Memory Integrity Testing (SCMIT)
 experiment was first flown during the STS-40 mission in June
 1991 and later during the STS-87 mission in December 1997

Background

- SCMIT is designed to detect soft-event upsets in passive magnetic memory
- A soft-event upset is a change in the logic state of active or passive forms of magnetic memory, commonly referred to as a "Bitflip"
- A soft-event upset can cause software exceptions, unexpected events, start spacecraft safeing or corrupt fault protection and error recovery capabilities

Background

In its most sever form loss of mission or spacecraft can occur

Scientific Objectives

- The scientific objectives of this experiment are:
 - Observe Soft-event upsets
 - Determine the frequency of soft-event upsets
 - Determine the characteristics of soft-event upsets
 - Determine the possible effectiveness of different types of shielding material
- During STS-40:
 Evaluate the possibility of using static memory as a type of passive detectors

Experiment - General

- The experiment uses a number of commercial floppy disks
- Each disk was loaded with a text file/bit-map identical in size and format
- Each disk contained one large text file/bitmap

Experiment STS-40

- Ten floppy disks were inserted into each of four storage containers
- Several of the disks were covered in one of three types of shielding material:
 - Normal anti-static nylon
 - Aluminized Mylar mesh
 - •Field dispersing (electrically neutral) nylon

Experiment STS-87

- Five floppy disks were inserted into a one storage container
- Three disks were covered with one of the three types of shielding material used during STS-40

Procedure - General

The experiment was constructed by:

- Developing a standard text file/bitmap
- Copying an identical standard text file/bitmap on each disk
- Testing to assure the integrity of each text file/bitmap

Procedure - General

- Covering a number of the disk with one of the three types of shielding material
- Inserting disks into storage containers
- Integrating the disks and storage containers into the GAS canister

Procedure STS-40

- The experiment was integrated into the GAS canister in June of 1990
- The experiment remained on the GAS Bridge assembly until after landing in June 1991
- The experiment was on orbit for 9 days
- Post flight recovery and analysis took place within 30 days of landing

Procedure STS-87

- The experiment was on orbit for 16 days
- Floppy disks that had not shown any affects (no evidence of soft-event upsets, text file/bitmap intact) from the STS-40 flight were re-flown during STS-87
- Post flight recovery and analysis took place within 60 days of landing

Post Flight Analysis - General

- After each flight every disk was analyzed for evidence of soft-event upsets
- Each text file bit was viewed/compared and verified

Post Flight Analysis STS-40

- During the first flight, single event, soft event upsets were not observed
- However ten disks in one of the four storage containers did exhibit characteristics that could be attributed to a massive number of soft-event upsets
- Preflight testing was conducted that verified the integrity of each text file/bitmap before integration and launch

Post Flight Analysis STS-40

- Preflight tests should have captured the types of errors discovered if the errors occurred during development and construction
- The disks that exhibited these characteristics where not shield during the flight
- It is important to note the experiment was stored for one year on the GAS Bridge assembly prior to launch in June 1991

Post Flight Analysts STS-87

- During the second flight, single event, soft event upsets were not observed.
- The massive errors observed in 10 disks from the first flight were not present in any shielded or unshielded disk re-flown during STS-87

Conclusions - General

- The data supports an anomalous event occurring to 10 disks flown on STS-40
- Additional exposure (16 days on orbit) on STS-87 of five disks did not reproduce the types of errors observed during STS-40
- Storage of the experiment on the GAS Bridge for one year prior to the launch of STS-40 may have contributed to the observed errors

Conclusions - General

 The third flight on STS-??? will repeat the experiment has flown during STS-87

- The types of soft-event upsets anticipated prior to flight were not observed
- A massive number of changes were observed in the logic state of 10 disks from a single container
- This indicates the possibility that soft-event upsets or a similar type of event occurred to 25% of the samples flown

- Possible while the experiment was stored on the GAS Bridge (1 year prior to flight) it was exposed to a magnet field or high-energy event
- However it is worth noting 30 other disks divided among 3 different containers did not show any affect from the flight
- It is also possible the errors occurred during construction of the experiment. However this is considered unlikely

- During the second flight exposure to the environment of low earth orbit increased to 16 days
- A smaller number of disks served as detectors and all five were contained in a single box
- Three of the five disks were covered by one of the three types of shielding material

- Soft-event upsets were not observed in any disk
- In addition the type of massive errors from the first flight were not observed
- This data is contra to the first flight
- The third flight on STS-101 will repeat the experiment has flown during STS-87

Soft-Event Upsets

Uncorrupted Text File/Bitmaps

Corrupted Text File/Bitmaps

111111111111111111111111111111111111111	111
1111111111111111111111111111111111111	111
1111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
1111111111111111111111111111111111111	111
1111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111f2q(*BI111111111111111111111111111111111111	11
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
11111111111111111111111111111111110&%*IG111111111	111
11111111111111111111111111111111111111	(^)
_T&CIF111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111
111111111111111111111111111111111111111	111

Position of SCMIT in GAS Canister STS-40

Position of SCMIT in GAS Canister STS-87

GBA with G-616 on STS-40

SCMIT On-orbit STS-97

Ready to go on STS-???!

Additional data

For additional information please contact

Tom Hancock AverStar 256 961-4002 thomas.hancock@hsv.boeing.com or tom.hancock@msfc.nasa.gov